

Sustainable Energy and Housing Approaches in Europe -

BSMC Dr. Bernd Steinmüller Sustainability Management Consulting www.bsmc.de

Illinois – Renewable Energy and Sustainable Lifestyle Fair August 2006

- "Do not cut more wood than you grow again! ..."
- Rio 1992 social, economic, ecological dimensions -> Agenda 21st Century
- Global Challenge
 - Reached and transgressed natural limits during last decades
 - Continued population growth and inequalities built up additional pressure
 - 20% of population use about 80% of the global resources
 - 450 Mill. people in Europe "EU-25" high end consumers ... (Germany 80 Mill. largest country)
 - 300 Mill. people in the US ... highest load
 - Developing countries (China, India 2400 Mill.) ... asking their share
- Factor Energy most critical
 - Resources limited ... in unstable countries
 - Sinks limited ... climate problem
 - Production & usage ... not sustainable

for Energy Related CO₂-Emissions

Global limit:

10 billion tons p.a.

Population 2050: 10 billion people

max. 1 ton

CO₂-Emissions in tons p.c. p.a. across the world

Source: Wikipedia, Licenced under GNU-Condition

GEDL: Permission is granted to copy, distribute and/or modify includent under the terms of the GNU Free Documentation Leans, Version 1.2 or any later version published by the Free Schemer Contraction; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "CNU Free Documentation Leans".

Energy-related CO₂-emissions have to be reduced

by at least a factor of 10 in the western world!

in particular for Housing

- Consumption more than 1/3 of energy in most western countries
 - 40% energy share in US and Europe
 - Where heating accounts for more than 50% in US, 80% in Europe
 - Remaining part: electricity for household appliances and cooling
 - Besides housing is responsible for ~ 50% of all material flows
- Offers enormous "no-regret" potentials
 - Energy savings, reduction of CO₂-emissions
 - Ecological improvements
 - Comfort, health
 - Overall cost reductions
 - Sustainability as a whole

Renewable Energies

Global Primary Energy Consumption

doubled since 1971... share renewables constant < 15%

European Union "EU-25"

- Background
 - 25 countries with heterogeneous conditions
 - Main responsibilities remain with individual nations
 - EU supplies political framework
- Energy Challenge
 - High energy dependency (trend 50 to 70% by 2030), economic dangers
 - Lack of environmental sustainability
- Status Energy and Emissions
 - Renewable energy share 6%
 - CO₂-Emissions 8 t p.a. p.c.
- Short Term Goals
 - Renewable energy share 12% (2010)
 - CO₂-Reduction 8% (Kyoto 2012)

EU Strategy & Political Cornerstones – Renewables & Efficiency

- EU supplies framework to be filled in by national and cooperative actions
- EU Green Papers ... outline goals and strategies
 - Security Energy Supply 2000
 - Energy Efficiency 2005
 - Sustainable Energy 2006
- EU-Directives ... define legal framework to be implemented nationally
 - Renewable Electricity: Overall target: 21% (2010) + country targets + review mechanisms
 - Renewable Fuels: General target 5,75% (2010)
 - Renewable Heat: in preparation
 - Efficiency for Energy Using Products: performance & labeling standards ... in force
 - Efficient Buildings: calculation, performance, labeling standards/energy pass by 2006
- EU- Programs & Projects (Selection) ... stimulate research, innovation, education
 - 1984 2001 5 Framework Programs and Joule-Thermie Program for Buildings
 - 2002 2006 6th Framework Program with 70 mill. € on efficiency, 80 Mill. Renewable
 - 2007 2013 7th Framework Program in preparation

Renewable Energies in EU-Countries 2004 have a 6% Share... "New Renewables" triggered in Germany, Spain ...

The Development of Wind Energy – German Success Story

Political Cornerstones for Renewables in Germany

- Renewable Energy Act (EEG) ... ~ 2.5 Bill. € p.a.
 - Forces grid operators to buy renewable energy from third parties
 - Guaranteed minimum prices, decreasing over time
 - End customers pay.... ~ 30 €/a p.c., 3% price increase
 - CO₂-Efficiency: Cost 40 €/t versus Benefit 70 €/t \rightarrow positive balance
- Energy Taxes and Fees
 - Play a prominent role in Germany (and Europe)
 - Order of magnitude 40% (heating oil), 65% (household eletricity), 200% (gasoline)
 - Including VAT, concessions, cogeneration, ecological tax
 - Ecological Tax: up to 2 Cent/kWh (5 ... 25%) → 18 Bill. €/a (220 €/a p.c.)
- Market Stimulation Program ... > 100 Mill. € p.a.
 - Financed by ecological tax reform
 - Subsidies (small plants) and special loans (large plants)
- Continued Research ... 2005: 100 new projects 100 Mill. €

Effects on Renewables in Germany

stimulates exponential grow of wind energy

Biomass Electricity

... and exponential growth of Biomass Electricity

hotovoltaic Electricit

Photovoltaic exploding since 2000

Renewable Electricity Germany tripled since 1990, Wind taking the lead in 2004

Renewable Heat Germany - Dominated by Biomass

BSMC, August 2006

Source: BMU

Effects on CO₂-Avoidance

10% of CO₂-Emissions Avoided by Use of Renewables in 2005

Primary Energy and CO₂-Emission Scenario until 2050

Housing

Overall boundary conditions imply:

We have to improve energy performance of houses by a factor of 10 ... with a focus on heating demand

Energy consumption today

... tomorrow

Philips Experimental House -First (Ultra-)Low-Energy House in Germany, Aachen 1974 ff

- Super insulation: U-Value 0.14 W/m²K (R~40)
- Efficient Window Systems: (coated double) + shutters
- Controlled ventilation, 90% air-toair-heat recovery plus soil heat exchanger
- Heating demand 20 30 kWh/(m²a) (~700 - 1100 btu/(a*ft²))
- Renewable Energies
- Theory-Experiment Comparisons
- Parameter Studies US & Europe

Fig. 20 Yearly heating and cooling requirement as a function of window area and orientation for successive replacement of walls by windows in a SH-house in Freiburg 73 (50% IEA-load) For definition of window types (1) - (7) see table 1 Fig. 22 Yearly heating and cooling requirement as a function of window area and orientation for successive replacement of walls by windows in a SH-house in Madison (50% IEA-load) For definition of window types ①-⑦ see table 1

Window area

Source: Steinmüller 1979

Heating + cooling requirement [kWh/y]

Evaluation of experiences and consistent application of principles resulted in "Passive House" Concept

Passive Houses – Formal Definition

Central Requirement:

- Maximum Heating Load at Climate Extreme $\leq 10 \text{ W/m}^2$ (~ 1 W/ft²)
 - allows omission of traditional heating system

Secondary Requirements:

- Maximum Annual Heating Demand <= 15 kWh/m²a (4755 Btu/ft²a)
 - for south oriented buildings in Central Europe
- Overall Primary Energy Consumption <= 120 kWh/m²a (38039 Btu/ft²a)
 - Including household appliances —
 - To be lowered in the future

Passive House – Principles

- Highly Efficient Building Envelope
 - Highly insulated components: U-factors < 0.15 W/(m²K) (0.026 Btu/h/ft²/°F), Avoidance of thermal bridges
 - Energy-efficient windows: U-factors < 0.80 W/(m²K) (0.14 Btu/h/ft²/°F), solar heatgain coefficients ~ 50%, southern orientation (if possible) and shade provisions
 - Air-tightness: infiltration rate < 0.6 per hour in pressure test at 50 Pa
 - Compact form
- Highly Efficient Air and Heat Supply
 - No separate traditional heating system necessary
 - Energy-efficient ventilation: Highly efficient heat recovery from exhaust air > 80%
 - Hot water supply using regenerative energy sources
- Energy-saving household appliances

Passive House – Primary Energy Ratings in Comparison with Current Average and Other Standards

Darmstadt-Kranichstein First Passive House in Europe/Germany 1991

- Super insulated House in a Row
 - Insulation: 10 18 inches, U-Value 0.1 bis 0.14 W/(m²K) → R40 to R50
 - Optimized triple panes windows with insulated frames, south oriented
 - Ventilation with heat recovery
- Rest Energy Demand
 - Heating: 12 kWh/(m²a)
 - Hot water: 8 kWh/(m²a)
 - Household appliances: 11 kWh/(m²a)
- Covered by
 - Vacuum collectors
 - Gas condensing furnace

Wiesbaden-Lummerlund First Passive House & Low Energy-Settlement in Europe 1997

- 46 Houses in a Row,
 - 50% Passive
 - 50% Low Energy
 - Building cost: 90 100 €/ft²
- Scientific Evaluation
 - Inhabitants highly satisfied
 - Passive Houses preferred to low energy ones
- Passive Houses enable sustainable life-style
 - Energy reduction factor 10
 - Economically attractive
 - Comfortable, healthy indoor climate
 - No sacrifices, but new degrees of freedom

Source: BKI, BSMC, SurTec

Exponential Growth of Passive Houses in Germany

BSMC, August 2006

Source: PHI

Old Buildings

Old Buildings

BSMC, August 2006

Source: IWU

Heat Saving Potential in Old and New German Dwellings

BSMC, August 2006

Source: IWU/BSMC

Energy Efficient Buildings - Status and Goals Germany 2006

- Status
 - New Buildings: Low energy standard prescribed
 - Old buildings:
 - 140% Low energy standard ... prescribed in case of major modernization
 - Additional standards ... for replacement of individual components
 - ≻ Problem:
 - > Low energy standard insufficient in new as well as in old buildings
 - Modernization rates ~ 1% p.a. and modernization efficiency < 33 % by far too low
- Government Goals
 - Old buildings: Modernization rate \rightarrow 4% p.a., improvement of modernization standards
 - New buildings: improved standards ... to be specified
 - CO_{2:} Stabilization of direct emissions from building sector at 120 Mio tons p.a. plus overall goals short term (Kyoto), long-term (-80% until 2050)

Current Political Cornerstones & Measures

- Financial Instruments
 - Federal Housing Program upsized by a factor of 4(!): special loans, subsidies, tax reductions 1.5 Bill. €/a (20p.a.p.c.)
 - Ecological Tax: up to 2 Cent/kWh (4 ... 23%) → 18 Bill. €/a (220 €/a p.c.)
- DENA Information and Innovation Campaigns
 - DENA German Energy Agency founded in 2000
 - DENA Energy Labeling, Energy Passport (inline with EU-directive)
 - DENA Advanced Retrofit Program
- Publicly funded Research < 100 Mill €/a
- Private Initiatives & Public Private Partnerships
- State & Regional Programs and Activities (Funding, Training, Research Institutes)

Progress in Modernization of Old Buildings

Regional Forerunners Identified in Competitions

Source: BSMC, IWU

Systematic National Advances via DENA-Programs

- Demanding targets exceeding new buildings
 - Quality of building envelope
 - Primary energy consumption
 - Sustainability measures
- Upgraded government funds
 - Higher loans
 - 15 20 % debt relief
- Phases

Means

- 1. 33 Buildings (2003 2005) multi-family
- 2. > 110 Buildings (2005 2007) incl. single-fam.
- 3. > 1000 Buildings ... under planning

Example: Advanced Retrofit of 8-Family House in Bielefeld

- Sustainability Approach
 - Life-Cycle Optimization Energy and Economy
 - Long-term Usability, adaptability
 - Passive House Technologies
 - Roof 15, Wall 8, Cellar 4 inches additional high performance insulation
 - Reduction of Thermal Bridges
 - Passive House Windows
 - Ventilation 90% heat recovery
 - Solar assisted hot water
 - Factor 10 savings
 - In Energy & CO₂-Emissions
 - Economically "multipliable" and even optimum for most measures

Example Insulation: Overall Benefits ranging from 45 to 360 €/m²

Net Present Value €/m² Component Area

Results Phase I: On the Average 87% Savings for all Buildings

BSMC, August 2006

Source: Dena

... a glance and outlook at Europe

CEPHEUS Cost Effective Passive Houses as European Standard 1998 - 2001

- First European Research & Development Project, sponsored by the EU-Joule-Thermie Program
- Erection and Scientific Evaluation of about 250 passive houses/living units
- Demonstrating cost-effective passive houses in 5 European countries
- Creating preconditions for market penetration
- Presenting full primary-energy and climate neutral approach combined with use of renewable at the World EXPO 2000

Passive House Conference May 2006: signals spread-out in and outside Europe

- Passive House projects under way in almost each European Country
- Passive House Interest Groups coordinating and spreading the information (see map)
- Completed passive house projects confirm the applicability of the passive house concept to a broad spectrum of climate conditions and building types
- Passive House Technology is increasingly applied to "old" buildings
- Interest from outside Europe emerging
- Passive House Projects in Asia and America under way

Conclusions

- Non-renewable energy consumption has to be reduced by a
 - factor of 2 world wide
 - factor of 10 in the western world at least
- This can only be achieved by combining
 - Drastic energy efficiency & saving measures (factor 5 and more)
 - Promotion of renewable energies (factor 2 at least)
 - In all sectors: industry, traffic and housing
- The Housing sector is of special importance
 - Causing 40% of energy consumption in Europe and the US
 - Offering large "no-regret" saving potentials and huge quality of life with proven, promising technologies waiting for local application
- Sustainable life starts at home ...

