

Aggressive Residential Efficiency for Greenhouse Gas Reduction: What is possible, What will it take?

BSMC

Dr. Bernd Steinmüller

Sustainability Management Consulting

www.bsmc.de

ACI – Home Performance Conference Cleveland, Ohio, April 2007

for Energy Related CO₂-Emissions

Global limit:

10 billion tons per year

Population 2050: 10 billion people

per capita and year

CO₂-Emissions in tons p. p. and yr. across the world

Source: Wikipedia, Licenced under GNU-Condition

GEDL: Permission is granted to copy, distribute and/or modify includent under the terms of the GNU Free Decumentation Leanes, Version 1.2 or any later version published by the Free Schemer Counter, with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled

Energy-related CO₂-emissions have to be reduced

by at least a factor of 10 in the western world!

Can Renewable Energies solve the problem? ...

Global Perspective – European Approaches

Global Primary Energy Consumption

doubled since 1971... share renewables constant < 15%

Housing

Overall boundary conditions imply:

We have to improve energy performance of houses by a factor of 10 ... with a focus on heating demand

Energy consumption today (Germany)

... tomorrow

Passive Houses – Formal Definition

Central Requirement:

- Maximum Heating Load at Climate Extreme $\leq 10 \text{ W/m}^2$ (~ 1 W/ft²)
 - allows omission of traditional heating system

Secondary Requirements:

- Maximum Annual Heating Demand <= 15 kWh/m²a (~ 5 kBtu/ft²a)
 - for south oriented buildings in Central Europe
- Overall Primary Energy Consumption <= 120 kWh/m²a (~ 40 kBtu/ft²a)
 - Including household appliances —
 - To be lowered in the future

Passive House – Site Energy Usage Comparison to Existing and New Buildings in Europe and the US

Source: PHI, J. Krigger ..

Passive House - Primary Energy per Floor Area – Comparison with European and US Residential Building Types

Source: PHI, J. Krigger (converted site data)

Darmstadt-Kranichstein First Passive House in Europe/Germany 1991

- Super insulated House in a Row
 - Insulation: 10 18 inches, U-Value
 0.1 bis 0.14 W/(m²K) → R40 to R60
 - Optimized triple panes windows with insulated frames, south oriented
 - Ventilation with heat recovery
- Rest Energy Demand
 - Heating: 12 kWh/(m²a)
 - Hot water: 8 kWh/(m²a)
 - Household appliances: 11 kWh/(m²a)
- Covered by
 - Vacuum collectors
 - Gas condensing furnace

Source: Feist (IWU, PHI)

BSMC, April 2007

Source: PHI

.... Additional Investment Drops \rightarrow 50 \in /m² (6 %/ft2)

BSMC, April 2007

Source: W. Feist PHI

Energy Savings > 50 €/m² (6\$/ft2) ... dependent on scenario

Old Buildings

Old Buildings – Broad Spectrum of Types, Ages

BSMC, April 2007

Source: IWU

Heat Saving Potential in Old and New German Dwellings

BSMC, April 2007

Source: IWU/BSMC

Systematic National Advances via DENA-Programs

- Means
 - Demanding targets exceeding new buildings _
 - Quality of building envelope ٠
 - Primary energy consumption
 - Sustainability measures
 - Upgraded government funds
 - special "cheap" loans
 - up to 20 % debt relief •
- Phases
 - 1. 33 Buildings (2003 - 2005) multi-family
 - 100 Buildings (2005 2007) incl. single-fam. 2. >
 - 3. > 1000 Buildings ... just started

Example: Advanced Retrofit of 8-Family House in Bielefeld

- Sustainability Approach
 - Life-Cycle Optimization Energy and Economy
 - Long-term Usability, Adaptability
 - Passive House Technologies
 - Roof 15, Wall 8, Cellar 4 inches additional high performance insulation
 - Reduction of Thermal Bridges
 - Passive House Windows
 - Ventilation 90% heat recovery
 - Solar assisted hot water
 - Factor 10 Savings
 - In Energy & CO₂-Emissions
 - Economically "multipliable" and even optimum for most measures

Results Phase I: On the Average 87% Savings for all Buildings

BSMC, April 2007

Source: Dena

Conclusions

- Non-renewable energy consumption has to be reduced by a
 - factor of 2 world wide
 - factor of 10 in the western world at least
- This can only be achieved by combining
 - Drastic energy efficiency & saving measures (factor 5 and more)
 - Promotion of renewable energies (factor 2 at least)
 - In all sectors: industry, traffic and housing
- The housing & building sector is of special importance
 - Causing 40% of energy consumption in Europe and the US
 - Offering large "no-regret" saving potentials and huge quality of life with proven, promising technologies waiting for local application
- Sustainability starts at home ...

